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Abstract—The problem of transient stabilization of electrical power 
systems has been an active area of research in recent years. In this 
paper we address the performance of different control laws for 
stabilization of the Single Machine Infinite Bus (SMIB) system and a 
Two Machine Infinite Bus (TMIB) system with Controllable Series 
Capacitors (CSCs) as actuators. The SMIB and a TMIB systems are 
described by the swing equation model and the CSCs are modeled by 
the injection model. The control laws are derived using nonlinear 
control techniques- Immersion and Invariance (I&I). 
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1. INTRODUCTION 

Traditional analysis and control techniques for power systems 
are undergoing a major reassessment in recent years. See [1] 
for an account on the new issues in power system operations. 
Power systems exhibit various modes of oscillation due to 
interactions among system components. Many of the 
oscillations are due to synchronous generator rotors swinging 
relative to each other. Transient stability is concerned with a 
power systems ability to reach an acceptable steady-state 
following a fault. Conventionally, linear controllers are used to 
improve the transient performance. Given the highly nonlinear 
nature of the power system models the applicability of linear 
controller design techniques for transient stability 
enhancement is severely restricted. On the other hand, the 
application of more promising nonlinear control methods has 
attracted much attention in the literature to replace the 
traditional Automatic Voltage Regulator (AVR) and the Power 
System Stabilizer (PSS) control structure. In [2], nonlinear 
control using turbine control, and excitation control has been 
proposed. In [3]–[6], feedback linearization is applied to the 
control of a single machine as well as multi-machine systems, 
using output feedback and state observers. How-ever, 
robustness problems, both against parameter uncertainties and 
unmodeled dynamics, of these nonlinearity cancellation 
schemes remains unanswered. In [7], nonlinear controller 
design of thyristor controlled series compensation is 
presentedfor damping inter-area power oscillations. 

An important factor, which decides the capacity of a 
transmission line to transfer the electrical power across the 
network, the stability margin of the power system, is the 
reactance of the transmission line. The concept of Flexible AC 
Transmission System (FACTS) relies on the use of such power 
electronic devices, and offers greater control of power flow, 
secure loading and damping of power system oscillations see, 
e.g., [8]. The devices can classified into those operating in 
shunt with the power line such as Static Var Compensator 
(SVC), in which cases the injected currents are controlled and 
those operating in series with the power line such as 
Controllable Series Capacitor (CSC), Unified Power Flow 
Controller(UPFC) , in which cases the inserted voltages are 
controlled. Recently the application of nonlinear control 
strategies with controllable series devices has been 
investigated for improving the transient stability of a power 
system [7]–[9]. In [10], the IDA-PBC strategy is used for 
transient stabilization of a synchronous generator using a CSC. 
Further in [11], the I&I strategy has been used to stabilize the 
nonlinear swing equation model of the SMIB using a CSC. 

In this paper we address the problem of transient stabilization 
of the SMIB and TMIB systems using CSCs. The power 
systems are modeled using the swing equation model and the 
CSCs are modeled by the injection model [12].The paper is 
organized as follows: In Section 2 we briefly introduce the 
control synthesis methodologies. In Section 3 we describe the 
SMIB system. The control laws are derived using I&I control 
technique, and comparison study using simulation plots. In 
Section 4 we describe the TMIB system. The control laws are 
derived and comparison study is performed using simulation 
plots. And finally Section 5 concludes the paper. 

2. CONTROL STRATEGIES 

In this section we briefly describe the control technique for 
transient stabilization of SMIB and TMIB. We consider 
nonlinear control techniques- Immersion and Invariance (I&I) 
. 
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2.1 Immersion and Invariance 

Immersion and invariance[15] relies upon the notions of 
system immersion and manifold invariance. The basic idea of 
I&I is based on (a) immersing a lower order desired target 
dynamics onto a manifold in the original space, and (b) 
matching the closed-loop system with the immersed system 
asymptotically. The control objective is to make the immersed 
manifold attractive and invariant. The control objective is to 
make the immersed manifold attractive and invariant.The 
main result of [1] is now stated . 

Theorem:[15] Consider the state space model of the system 

ẋ=f(x)+g(x)     (1) 
where f(x) and g(x) are smooth functions ,with state x∈ ℝ𝑛𝑛and 
control u∈ ℝ𝑚𝑚 ,with an equilibrium point, 𝑥𝑥∗ ∈ ℝ𝑛𝑛  to be 
stabilized . Let p<n and assume we can find mappings 

𝛼𝛼:ℝ𝑝𝑝 → ℝ𝑝𝑝 ,𝜋𝜋:ℝ𝑝𝑝 → ℝ𝑛𝑛 ,c : ℝ𝑝𝑝 → ℝ𝑚𝑚 , 

𝜙𝜙: ℝ𝑛𝑛 → ℝ𝑝𝑝, Ψ: ℝ𝑛𝑛  x ℝ𝑛𝑛−𝑝𝑝 → ℝ𝑚𝑚  

such that the following hold. 

1) (H1) (Target system ) The system 

𝜉̇𝜉 = 𝛼𝛼(ξ)  (2) 

with state ξ ∈ ℝ𝑝𝑝 has asymptotically stable equilibrium at 
𝜉𝜉∗ ∈ ℝ𝑝𝑝 and  𝑥𝑥∗=𝜋𝜋(𝜉𝜉∗). 

2) (H2) (Immersion condition) For all ξ ∈  ℝ𝑝𝑝  

f(𝜋𝜋(ξ)) + g(𝜋𝜋(ξ)) c(𝜋𝜋(ξ)) = 𝜕𝜕𝜕𝜕
𝜕𝜕ξ

 𝛼𝛼(ξ). (3) 

3) (H3) (Implicit Manifold) The following set identity 

{X ∈ ℝ𝑛𝑛⃓𝜙𝜙(x)=0} 

 = { X∈ ℝ𝑛𝑛⃓ x= 𝜋𝜋(ξ) for some ξ ∈  ℝ𝑝𝑝 }   (4) 

4) (H4) (Manifold attractive and trajectory boundedness all 

Trajectories of the system  

𝑧̇𝑧 = 𝜕𝜕𝜕𝜕
𝜕𝜕ξ

 [f(x) + g(x)ψ (x,z)]     (5) 

𝑥̇𝑥 = f(x) + g(x)ψ (x,z)     (6) 

are bounded and satisfy 

lim𝑡𝑡→∞ 𝑧𝑧(𝑡𝑡)=0 (7) 

Where z=𝜙𝜙(x) and u=ψ(x) . 

Then 𝑥𝑥∗ is an asymptotically stable equilibrium of the closed 
loop system 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔ψ(x,𝜙𝜙(x)). 

The result in theorem implies that the stabilization problem for 
the system(1) can be divided into two sub problems .First, 
given the target dynamical system 𝜉̇𝜉 = 𝛼𝛼(ξ) which is locally 
asymptotically stable and of dimension strictly smaller than 
the dimension of x, find if possible ,a manifold M described 
implicitly by {x𝜖𝜖ℝ𝑛𝑛⃓𝜙𝜙(𝑥𝑥)=0} and in parameterized form by 
{x𝜖𝜖ℝ𝑛𝑛⃓𝑥𝑥 = 𝜋𝜋(𝜉𝜉),for some ξ𝜖𝜖ℝ𝑝𝑝 },which can be rendered 
invariant and such that the restriction of the closed-loop 
system to M is described by the target dynamics.The mapping 
𝜋𝜋: 𝜉𝜉 → 𝑥𝑥 is an immersion, that is,the rank of 𝜋𝜋 is equal to the 
dimension of ξ. Secondly design a control law u=ψ(x,z) that 
drives to zero the off-manifold coordinate z=𝜙𝜙(x) and keeps 
the system trajectories bounded. 

3.I&I Based Controller Synthesis For Stabilization Of 
SMIB System 

In this section we initially present the Modelling of SMIB 
system and control objective. 

3.1. Modelling and Problem Formulation 

Consider the SMIB system with a CSC as shown in Figure 1. 
It consists of a synchronous generator connected to the infinite 
bus or reference bus. The magnitude of the voltage and the 
frequency for the infinite bus are assumed to be constant. In 
Figure 1 the generator bus is numbered as 1 and the infinite 
bus as 2. They are connected to each other through a series 
combination of the line reactance X12 and a CSC which is 
denoted by a reactance –jXc

 

Fig. 1: The SMIB system with a CSC 

notation: δ is the rotor angle and ω is the rotor angular speed 
deviation with respect to a synchronously rotating reference 
for the generator. Let D > 0, M > 0 and P > 0 be the damping 
constant, moment of inertia constant and the mechanical 
power input to the generator, respectively. The dynamics of 
the synchronous generator is described by the swing equation 
model as, 

. We use the following. 
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𝑀𝑀[𝑃𝑃−𝐷𝐷𝐷𝐷2−𝑏𝑏1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1]

� + � 0
−𝑏𝑏1 
𝑀𝑀 sin 𝑋𝑋1

�u   (8) 

 
where x1 = δ and x2 = ω are the state variables, u is the input 
to the CSC, x l∗

D = {(x

 is the open loop reactance between buses 1 and 
2, and b1 = EV

𝑋𝑋𝐿𝐿∗
.We assume that the domain of operation as 

follows 

1, x2) ∈ S1×ℝ1| d1< x1<𝜋𝜋
2
− d1, d1

3.2 Control Objective 

> 0}. 

The open loop operating equilibriumpoint for the system (12) 
is given by x∗ = (x1∗ , 0). We assume that x∗ is known to us 
and synthesize a control law u in order to make the system 
(12) asymptotically stable at x∗

3.3 Controller Synthesis: 

.  

We use the I&I methodology to synthesize the controller for 
the SMIB system with a CSC. 

3.4 Controller Synthesis Using (I&I) Technique 

As a first stepin the controller synthesis we define a one 
dimensional target dynamical system as follows 

ξ̇=-aξ�̇ , a>0     (9) 

With the stable equilibrium point 𝜉𝜉∗,where 𝜉𝜉=ξ-𝜉𝜉∗ 

Once we define the target dynamics, we define a mapping 

𝜋𝜋: 𝑠𝑠1 → 𝑠𝑠1 × ℝ1as follows  

𝜋𝜋(𝜉𝜉): = � 𝜉𝜉
𝜋𝜋2(𝜉𝜉)

�  

where Π2

u=(P-
D𝑥𝑥2 − 𝑏𝑏1 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1) + 𝑎𝑎𝑎𝑎𝑥𝑥2 + 𝑀𝑀𝑀𝑀(𝑥𝑥2+a𝑥𝑥1�)/𝑏𝑏1 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1(10) 

(ξ) is to be chosen. Then, with this choice of Π(ξ) 
and the target dynamics (16), we get the control law as follows 

where a and γ are the tuning parameters. Note that, as x1

3.5 Simulation Results 

 
approaches to zero, the magnitude of the control law grows 
unbounded. 

We assume the following simulation parameters for the SMIB 
system as shown figure M= 8

100𝜋𝜋
 

,D= 0.4
100𝜋𝜋

,E=V=1(pu),𝑏𝑏1=2.5(pu),-1
3
≤ 𝑢𝑢 ≤ 1. To assess the 

performance of the proposed control laws we assume that a 

short circuit fault at the far end of the transmission line at the 
time t=1 s for a duration of 0.1 s 

We use the following systemparameters for the lightly loaded 
condition: The operating equilibrium point is x∗=(0.4556, 0) 
and P = 1.1 (pu). The values of the tuning parameters are 
chosen as a = 5 and γ = 7 for the I&I control law. From the 
simulations, we can observe the following: The open loop 
system exhibits heavy and sustained oscillations in x1 and x2

 

 
as shown by dotted lines in Figure 2. The closed-loop system 
oscillations decay at a faster rate and settle quickly.  

Fig. 3: Response of the SMIB system with a CSC: Solid 

line (I& I control law a=5,,γ=7,), dashed line (closed loop 
response a=2, γ=4), dotted line (open loopresponse). 

3. I&I BASED CONTROLLER SYNTHESIS FOR 
STABILIZATION OF TMIB SYSTEM 

In this section we initially present the Modelling of TMIB 
system and control objective. Next, we derive stabilizing 
control laws for the TMIB system using power system 
stabilizer, feedback linearization and I&I techniques. 
Performance of these control laws are compared, in the case of 
machine operating at lightly loaded and heavily loaded 
conditions 

4.1 Modelling and Problem Formulation: 

 
Fig. 4: A Two Machine Infinite Bus System With 2 CSC's 
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Consider the TMIB system with two CSCs as shown in Figure 
4. It shows two generators G1 and G2 connected with the 
infinite bus. The generator buses for G1 and G2 are denoted 
by 1 and 2, respectively, and the infinite bus is denoted by 3. 
We can write the dynamics of the i-th generator (for i =1,2) 

havingδ i as rotor angles and ω i as rotor angular 
speeddeviations as follows 

�

𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
𝑥𝑥4̇

� =  

⎝

⎜
⎜
⎛

𝑥𝑥3
𝑥𝑥4

1
𝑀𝑀1

[𝑃𝑃1 − 𝑏𝑏12 sin(𝑥𝑥1 − 𝑥𝑥2) − 𝑏𝑏1 sin 𝑥𝑥1 − 𝐷𝐷1𝑥𝑥3]

1
𝑀𝑀2

[𝑃𝑃2 − 𝑏𝑏12 sin(𝑥𝑥2 − 𝑥𝑥1) − 𝑏𝑏2 sin 𝑥𝑥2 − 𝐷𝐷2𝑥𝑥4]⎠

⎟
⎟
⎞

 

+

⎝

⎜
⎛
−

0 0
0 0

b1
M1

sin x1 0

0 − b2
M2

sin x2⎠

⎟
⎞
�

u1
u2
� (11) 

wherex1=δ1,x2 =δ2, x3=ω1,and x4=ω2 are the state variables 
u1 and u2 are the inputs to the CSC and Di>0 Mi>0, bi>0 and 
b12>0 are the system constants for i=1,2.We assume the 
domain of operation as follows 

 D={(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4)∈ 𝑆𝑆1 × 𝑆𝑆1 × ℝ2 │ 

𝑑𝑑𝑖𝑖 < 𝑥𝑥𝑖𝑖 <
𝜋𝜋
2
− 𝑑𝑑𝑖𝑖, 𝑑𝑑𝑖𝑖 > 0, 𝑖𝑖 = 1,2}    

4.2 Control Objective 

The open loop operating equilibrium point for the system (18) 
is given by x∗ = (x1∗, x2∗0,0).We assume that x∗ is known to 
us and synthesize a control laws u1and u2 in order to make the 
system (18) asymptotically stable at x∗. 

4.3 Controller Synthesis using I&I technique 

We define the target dynamical system as follows 

ξ̇1= - a1ξ�1, a1 > 0 (12) 

ξ̇2= - a2ξ�2, a2 > 0      (13) 

with stable equilibrium point ξ∗=(ξ1∗, ξ2∗),where  ξ̇∗ = (ξi −
ξi∗) for i=1,2. 

Once we define the target dynamics, we define a mapping Π: 
S1 × S1 → S1 × S1 × ℝ2as follows 

Π(𝜉𝜉): = 

⎝

⎛

ξ1
ξ2

Π3(ξ)
Π4(ξ)⎠

⎞  

where Π3(ξ) and Π4(ξ) are to be chosen. Then, with this 
choice of Π(ξ)

Fig4.1Response of TMIB system-with I&I control law and the 
fault at generator G1. Dashed line represents(closed loop 

response a1=a2=γ1=γ2=3),solid line represents (I&I  
control law a1=8,a2=4, γ1=10,γ2=8),Dotted line  

represents (open loop response) 

 and the target dynamics (25) and (26), we 
get the control laws as follows 

𝑢𝑢1 
=𝑃𝑃1−𝑏𝑏12 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥1−𝑥𝑥2)−𝑏𝑏1 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1−𝐷𝐷1𝑥𝑥3+𝑎𝑎1𝑀𝑀1𝑥𝑥3+𝑀𝑀1𝛾𝛾1(𝑥𝑥3+𝑎𝑎1𝑥𝑥�1)

𝑏𝑏1 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1
(14) 

 𝑢𝑢2 =
𝑃𝑃1−𝑏𝑏12 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥1−𝑥𝑥2)−𝑏𝑏2 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥2−𝐷𝐷1𝑥𝑥4+𝑎𝑎2𝑀𝑀2𝑥𝑥4+𝑀𝑀2𝛾𝛾2(𝑥𝑥4+𝑎𝑎2𝑥𝑥�2)

𝑏𝑏1 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥2
 (15) 

Where a1, a2, γ1, and γ2 are the tuning parameters. Note that as 
x1 and x2 approaches to zero, the magnitude of the control 
laws grows unbounded. 

4.4 Simulation results 

We use the following system parameters for the TMIB  

system shown in figure(4):M1 = M2 = 8
100π

,D1 = D2 =
0.4

100π
, b1 = b2 = 2(pu),v=1(pu),1

3
≤ u1 ≤ 1 ,1

3
≤ u2 ≤1. 

To assess the performance of the proposed control laws we 
assume the following three transient condition (a) Fault at 
generator G1 (b) Fault at generator G2 and (c) Simultaneous 
faults occurs at the generators G1 and G2, at time t = 1 s for a 
duration of 0.1 s. 
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In all the three cases mentioned above, the open loop system 
exhibits heavy and sustained oscillations in x1, x2, x3 and x4 
as shown by dotted lines in Figures. The closed-loop response 
is plotted for two different sets of tuning parameters, and it 
shows significant improvement in terms of the peak overshoot 
as well as the settling time. Further, we observe that an 
increase in the values of the tuning parameters results in, 
decrease in the peak overshoot and the oscillations die out 
quickly in all three transient conditions. The third fault 
condition (simultaneous faults) is quite severe, however the 
proposed control law stabilizes the closed-loop system 
efficiently and swiftly. 

 

Fig. 4.2: Response of TMIB system-with I&I control law and the 
fault at generator G2. Dashed line represents(closed loop 

response a1=a2=γ1=γ2=3),solid line represents(I&I control  
law a1=8,a2=4, γ1=10,γ2=8) Dotted line represents 

 (open loop response) 

 

Fig. 4.3: Response of TMIB system-with I&I control law and the 
fault at generator G1 and G2. Dashed line represents(closed loop 
response a1=a2=γ1=γ2=3),solid line represents(I&I control law 

a1=8,a2=4, γ1=10,γ2=8.),Dotted line represents (open loop 
response) 

4. CONCLUSION 

In this paper we presented a non linear technique immersion 
and invariance methodology to asymptotically stabilize the 
SMIB and TMIB systems were modeled using the swing 
equation model and the CSCs were modelled by the injection 
model. By observing simulation results we can say that the 
open loop exhibits heavyand sustained oscillations in x1 ,x2 as 
represented by dotted lines in figure The closed loop response 
is plotted for two different sets of tuning parameters. By 
observing it we can say that the, by increasing the values of 'a' 
and′𝛾𝛾′ results in peak overshoot and oscillations die out 
quickly in about 2 seconds. An increase in the values of the 
tuning parameters results in, decrease in the peak overshoot 
and the oscillations die out quickly. 
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